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RECENT RESEARCH ON THE PROBLEM OF BASE PRESSURE T

P. Carriere
Scientific Director, Aerodynamics
Office National d'Etudes et de
Recherches Aéronautiques

Introduction

Consider an artillery projectile in the shape of an ogive and cylin- Zg_
drical body terminating abruptly in & fla*t base at BB'. The supersonic
flow around this projectile breaks away at BB' and merges downstream at
RR', thus containing in the empty zone a "still water", in which the pres-
sure is almost uniform and is lower than the ambient pressure. This re-
sults in a drag which sometimes represents from 30 to 40 percent of the
total projectile drag.
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The same problem exists at the exit of an aircraft or rocket reactor,
whenever the exit area of the propulsive nozzle is less than the total
area of the base surface. Again in this case the internal and external
streams break away at the level of the base section and merge further
downstream, thereby creating between the two streams & zone lebelled
"still water". The pressure in this zone is part of the propulsive force
which becomes greater as the base area upon which it applies becomes
greater.

A few years ago the solution to these problems of base drag was
treated in a purely empirical way, but recent research, which was sup-
ported in part by the O.N.E.R.A., has given us a clear and efficient
method of treating these problems (Refs. 1, 2, 3). The object of the

Present paper is to discuss a few basic problems connected with this
theory. .



1. Principle of the Method

First let us take a very simple mathematical case, that of a two-
dimensional uniform supersonic flow leaving the edge BB' at B. It under-
goes a Meyer expansion, characterized by a deflection Wl and by a Mach

number Ml whose values are related to Mach MO and to the ratio of the

pressure upstream po to the pressure Py existing at the still water zone.

First assume a perfect flow and that the pressure at the still water
p, is given, with p, ¢ p, for example. The flow (Ml) remains uniform until
an impact at R with the downstream wall. At R we have a shock whose in-
tensity is related to Mach Ml and to the deflection ¥ undergone by the
stream at this place.

Now observe that in the real flow conditions, i.e., for a viscous
fluid, the discontinuity in velocity c - ul between the two parts sepa-

rated by the jet line BR cannot remain the same, and changes progressively
into a continuous variation of the velocity, with the velocity almost
zero in the still water and egual to Uy outside it. The flow region which

is affected by this velocity change is labelled the "mixture layer" and
the corresponding phenomenon or effect is called the "mixture phenomenon".
This effect can be considered isobaric, provided the departure helght BB'
is sufficlently great as compared to the thickness of the mixture layer.

, A, perfect fluid B. real fluid

Now examine the behavior of the {luid particles which traverse the
mixture zone and reach the merger zone. Since maintenance of the steady-
state regime demands a conservation of the fluid mass contained in the
still water, the streamline (j) emanating exactly from B must reach R.
Any streamline situated above (j) must extend downstream from R, and any
streamline situated below (j) must return to the still water. The back-
flow which is immediately established upstream from R means that there
exists an opposing pressure gradient; in other words, in the flow of the
nonviscuous fluid there exists a continuous compressional wave, as

[



indicated in Figure B above. This wave replaces the shock wave of Figure
A relative to the perfect fluid. i

Since R is a point of rest on (j), the available momentum on (Jj) at
point C, immediately ahead of the recompression zone, must be of such
value as determined by the condition that it must go to zero at R due to
the opposing pressure gradient and to the viscous forces met from C to R.

If this condition is satisfied, it is evident that the fluid particles
moving below (3) are animated with a lower velocity, and make a U-turn
before reaching R; whereas the particles moving above (Jj) are faster and
will be able to overcome the braking sction from C to R and escape down-
stream.

The two basic problems which stem from this analysis are therefore
the following:

1) To determine the flow conditions in the mixture zone. We shall
characterize this flow at any point by the variables
4 p
¢ == 6=
P
Uy 1

The corresponding problem is called the'"isobaric mixture problem”.

2) Knowing the profiles ¢(y) and 6(y) in the mixture layer, near C,
where the merger effect starts to take place, to determine which stream-
line (1) will reach rest point R, with an angle ¥ of deflection of the
flow (Ml)' This problem will be called the 'merger problem". We shall
not discuss it here. It will suffice to assume, in order to understand .
the rest of this discussion, that angle ¥ is a known function of Mach M,

1
and of the variables € and 91 which characterize the state of the flow
immediately upstream from the recompression zone, on the boundary
streamline (1).
We shall teke this function as /5
Y = W(‘le elJ Ml) (l)

and term it the angular criterion for merger. Since ¢l and Gl are given

by the theory of the mixture as functions of a reduced ordinate nl, it is

clear that ¥ is an increasing function of 7

1 Indeed, the farther boun@ary



line (1) lies from the still-water zone, the greater the momentum, and
consequently, the greater the recompression it can overcome. This re-

compression is itself determined in the nonviscous flow to be an increas-
ing function of defection angle Vy, for a given Mach number Ml'

Suppose for example that (M;) and ¥ are given. Equation (1) yields
the value of Y i.e., the boundary flow line (1).

- If (1) and (j) coincide, the conservation condition is met and erand
¥ are compatible.

L
- If (1) is above (Jj), a certain quantity of fluid q = Plulf gedy >0
J

originating from the outer flow will enter the still water for every
unit of span of the device. Then ¥ and Ml will, in the steady-state
regime, be compatible only if an equivalent suction of ¢ in the still:
water is possible. : :

- If (1) is below (J), quantity q changes sign. This quantity is con-
stantly taken from the .still water and ejected dowanstream of R. Also,
¥ and Ml will be compatible only if an injectionof q into the still

water is possible.
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If this injection or this suction into or from the still water are
possible without modifying the behavior of the stream in the mixture
layer (in other words, without perturbing functions ¢ and 6, which repre-
sent the mixture layer), then there exists a one-to-one correspondence
between g and (¢l, 91) so that Equation (1) can be written in the form

V=¥ 010, (1) -

where C_ = S

¢~ Pun (h being the reference length, for example BB').
1% |
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Before examining in detail some of the problems which arise from.
this analysis, let us assume them to be solved and rapidly examine the
method to follow in the discussion of the problem of the base pressure.

Consider for example the case of two uniform two-dimensional streams
(MO) and (Mé) coming from either side of a base BB' and meeting.

e / % |

&
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Take a base pressure pl. The geometry of figure BB'R is immediately

determined by the Meyer expansions at B and B'.

Bk e f (o ,2)
Fo

Aey
B'R, x = f(llo. p'o) > %y

The final direction Rx', common to both flows (2) and (2') after merger,
results from the two isentropic compressions (1) —(2) and (1') —(2'),
with p2 = p2:. The standard solution to these problems is shown sche-

matically by the pressure deflection diagram below:

i ,
/o/ 2,2 .
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(CO) and (Cé) are curves for the Prandtl-Meyer expansion or isentropic

recompression of the upstream flows (C) and (C').



(Note that the upstream state (2) (2') does not depend here on the assump-
tion made for pl).

The diagram associates to each value of Py two deflections at R

v = BE, Rx' ¥v' = B'R, Rx

Using the merger criterion for each of the two flows (1) and (1'), we
have

W=W(Mlyc)

AR ACUPI

From this are deduced Cq and C'q, or the quantities q = Py ul h Cq

and q' = pH.lﬂl h' C:l that the two flows (1) and (1') pour into the

still water, respectively. The value chosen for pl will be suitable if

it leads to g + @' = 0; in other words, if one of the flows pours into
the still water a quantity equal to the quantity which the other removes.
The solution is therefore obtained by trial and error with pl.

Having reviewed the general method, we will now examine some of the Z§_
fundamental problems to be solved, and we shall restrict our attention
to the case of a turbulent mixture, since this is a very important prac-
tical case.

2. Problem of the Isobaric Turbulent Mixture

As we have seen, this problem is to describe a layer of mixture
flowing (Ml, Pl) out of B and into an infinite atmosphere, with a pres-

sure .
pl

If the initial stream is perfectly uniform, the problem becomes the
standard one (Gortler, Ref. 4). But if there exists an initial boundary
leyer upstream from B, the problem becomes difficult. An approximate
solution to it has been given by H. Korst (Ref. 5).



The principle involved in this solution is to simplify the equation
for the momenta belonging to the viscous layer so as to bring it to the
form of the heat equation. In this way, we can obtain for the distribu-
tion of velocities a solution which satisfies exactly the boundary con-
ditions, and also an approximate solution to the momentum equation. The
terperature distribution is immediately deduced from the velocity distribu-
tion by making an assumption on the turbulent Prandtl number. These two
distributions will finally be suitably shifted parallel to the y axis in
order to satisfy the momentum theorem in a general way at each abscissa.

The Relation Between the Temperature Profile and the Velocity Profile /9

We shall first recall a standard result of the theory of the boundary
layer. The temperature profile is deduced from the velocity profile by
making certain assumptions. For this we write the equations for the
momenta and the energy of the isobaric mixture layer. The first equation
is written

o 2 i IO 2 2 '
(\1}. EE A By T oy & Uy (l)

In this expression, t, 1s a turbulent transport coefficient analogous to

the viscosity coefficient of the laminar regime. We shall not determine
its form for the moment.

As a second unknown function, we take the total enthalpy Hi

2

un
Hi-H+§— (v «u)

and we write the energy equation:

o M . B (€ a .
?“‘ﬁ"" va“_a%\‘ue% q)



In this expression q represents the transverse heat flux which by analogy
with the equivalent expression of the laminar regime, is written for a
thermally perfect gas:

PSS (dH o Cy &T)

where xt is a turbulent coefficient of conductivity. We introduce, just

as in the laminar csse, a turbulent Prandtl number defined by

and we assume this coefficient (number) to be equal to one. ‘This assump-
tion is a priori an arbitrary one which must be tested "by its own
consequences. ‘

The energy equation then becomes: /10
Ay, ¢ an i
Qw eyl y. ?‘3 (E _u. (2)

In this form we can recognize from the anaiogies of (1) and (2) that to

every solution u (x, y) of (1) there corresponds a solution of (2) in the
forn

H (x, y)=au+p
where ¢ and B are constants to be determined from the boundary conditions.

In particular, if Hy is the enthalpy of rest in the still water and

if Hil is the enthalpy of rest in the outer stream, we have:

x, ) x Hey « (15, =1} € (3)

since ¢= 0 in the still water,
¥ = 1 outside.

Restricting ourselves to the case of perfect gases (H = Cy T), we

can write, neglecting ve « u2,



rom which the law of temperature distribution is:

AT o T (T Tl o Lo oot \
6:.»_‘_"5 T4 4—(“;_4 T,‘ (‘? P 4‘\ (L].)

A very simple special case occurs when Tm = Til. Then from (3), Hi

and Ti are constant in the mixture layer and (4) becones:

P ¢ - s :
%r:-%f -AE? ‘% ( (ul)

Therefore, as soon as the function @(7) is found, (4) and (L') will give
the corresponding distribution 6(7). That function will generally depend

T
on the Mach number M; and the ratio m,
Ty

Velocity Profile

The momentum equation for the isobaric mixture layer is written:

where T is the turbulent friction.

It is easy to determine that the second term of the left-hand side
is negligible with respect to the first one. The equation is simplified
by writing, analogously with the laminar case,

1

A ee' ?"w

——— o
=

. oy*

where e is a function of x characterizing the strength of the turbulent
mixture at that abscissa. In the momentum equation thus simplified, i.e.,

a2 e Dl
*dx agb

we introduce one final simplification by replacing u in the left-hand side

u
with an average value over the mixture zone, for example 5& (where uy is

the outside velocity).

The equation finally becomes:
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Sa, = £e(x) e
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This equation can be put into the form of the heat equation by the fol-
lowing change of variables

x .
2e(x) . 95 AL
g BJ T dx ?s—;;‘-
o .
It becomes:
29 _ oy
oY 9%0 (5)

where the integral is a well-known elementary one, giving:

. - L J
G* (a,S) £ o2 8THTS
FAVERY

We must find a solution to (5) capable of satisfying the following
conditions:

a) At x =0 (§ = 0) the velocity profile is generally, because of
the presence of the boundary layer, of the form:

) %>S Yvad
w0{8E> -
) { 3> 0 72 9, (&)
$<0 ¢=0

b) At any positive abscissa, the velocity for y = +e0 is u = u

2
whereas for y = -0 it is u = 0, from which: 1

% vo0 = 09 '{'s/l
3>0  yaz-c0 Q=0

A solution which satisfies these conditions is obtained by superpositions

of the elementary solution of the form:

?{4,3) =—3§=r‘f. &, u@%‘f) %«é_ (6)

It can be verified that this solution satisfies the boundary conditions
a) and b) above.
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Conditions a)

Take: )
[
nv§t=‘5
from which:
LR LAl - 9 (_*‘uzﬁig_) e ¥ap
) NiT -‘.‘fm * & .

When £ tends to zero the lower boundary of the integral tends to -oo, as

as £_1/2. Separate the integral into three parts

Y o -y »o0 ) : ,
A LA 7y 6% U
e ox "%?4 , e d%[ 6.5 i
YT Ay Yoo
-1/4
with, -for example, ¥ = % ¢ / .
Since ¢b is bounded (¢O £ 1), the last two integrals obviously tend

to zero, since their upper and lower boundaries increase infinitely in
absolute value and since
+ 00 o)
f e P ag

oc
is a convergent integral.

In respect to the first integral, note that for
13 =AY I ot
-_é. 4 <{2>—<.4-.J£,<3"“

the value of 28 «/E tends to zero with §, so that in this region we can

write A (Z—t—%ﬂ) = 9 (%’Q) at the boundary &= O.

We have, finally, at the boundary:



Conditions b)

Taking any abscissa & > 0, let us verify whether, when y tends to +oo,
¢ tends to 1, and when y tends to -co, whether ¢ tends to zero.

Take:
-:53. s = ——6:.».- = 1 cot c('v-c--':. X
g gt =g (7)
Then the proposed solution is written:
= -,
G T 7 (AN 2, dA
?.(?) =3y L 9, "'1;)

Since ¢b = 1 for A >76 (in other words, y > 8 ), we will be able to sepa-

rate ¢(m) in two parts:

1, PN
A ( A )
Q= ) an
. r“o'C\‘"Q}" ah

This latter integral can be written, taking

A-q =B .
.:*__{ P Wan LA o Pan — AL P ey
Vi T Vﬁi- - W Ll
Jo o e
The first of these integrals is equal to % and the second one to /1L
c 7 - o
§ axt (q-na)-_%fj «Fap’

"N
. [+

from which, finally:
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Fha N
o @) < A (8)

‘e

Wi ()= A
D=y [A «vcﬁ({] 17"\)} i
’ s

In this form we can immediately recognize with n_ chosen that when

7 increases infinitely in absolute value, the first term tends to unity.
The second term tends to zero, since for i« T this term is smaller than

Jo

and this expression has a bounded integral and an exponential which tends
to zero. When m tends to -oo, the expression erf (n-no) tends to -1.

The second term always tends to zero; therefore ¢ tends to zero.

Relations Between & and x

From experience with incompressible jets we are led to take for
e(x) the expression

Cel) =
Ay T hGg
so that, from (2)

§ = -2

T
from which

L4
2.\/3‘ z e
¢

The reduced coordinates 7 and.no introduced in (7) are written

B T 3
P28 o 2T (7"

and solution (6) becomes:

Do . A . ‘?. )
: < v~
QL e 4 @ e 9

<
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The Influence of the Initial Boundary Layer on the Velocity Profile
In the absence of the initial boundary limit we have no = 0, and

(8') therefore takes the very simple form:

® =L (1 +erf ) | (9)

o

This form has been given by Gortler as a first order approxXimation to
the unsimplified equations for the turbulent mixture,

By comparing (8!') and (9) we immediately see that the velocity

profile will be the less distorted by an initial boundary layer the

smaller no is, or in other words, the smaller 9. This is what happens
X

asyumptotically when x increases to infinity.

> lon

In practice it suffices that — be of the order of l/lO in order for

expression (9) to correctly represent the shape of the velocity profile.

3. Search for M, in the Genéral Case

Consider the problem of an isobaric mixture characterized at the

origin B by a uniform strean (p}, Ml)’ extending in the neighborhood of

the wall into a boundary layer hsving & proiile LI @O (%). Assume in

u
. 1
addition that into the still wuioir a quantity of mass q and momentum 1

(per unit of span) is injected.

Let us try to determine the boundary streamline (1) which, when
merged, will satisfy the equilibrium condition of the still water.

As stated previously, we assume the problem of the mixture solved.
We know in this way the shape of the velocity and temperature profiles:

%’;':“?(‘7) X =

ol

with 7= EEZ + constant.
The constant which enters in the expression for M will be so
determined that the momentum condltion be generally satisfied between

the abscissa x = 0 and any other abscissa X.



. 0
N

Let RR' be a streamline
outside of the wviscous zone.

nonentum theorem between x

At the origin the input

]
—~
O

-~

or, after dividing by Pl u%

]

%i;/

=
€ o

sufficiently far from Bx so that it lies
RR' is parallel to Bx. Let us write the
0 and x with Y <Vg-

momentum is, per unit of span:

. !‘-‘R
=1 + pu® dy

J

~
A

- 4
= yE ot
(2 B ) o ?‘u’q

At abscissa x the exit momentum is

Iiys vagad;dﬂ

-2

Or, using the dimensionless variables:

i

:O

£
¥
[}

3

M

L

6

(,\7?

i
u
{

Jeoo”

Since this is an isobaric process we must have:

1 =

I(o) I(x)

2 yza, '
T 2 Ay 0gan
X ‘f‘uﬁ‘ .



Since the left-hand side is assumed known, and since 9(7) and ¢(7)
are determined, this relation delines the quantity My corresponding to

streamline (RR' ). In other words, it defines the y shift of the velocity
and temperature profiles, such that conservation of momentum be satisfied
at absclissa x.

ne (1). The necessary and suf-
h is contained in the still water
R') and at every abscissa we

find a quantity equal to the gquantity at location x = 0, i.e.,

“ i\.&l
ia ]
q ,,J T opnday .;J' grrday
A

Q< ":L(x')

or, using dimensionless verilablies

Sa gty
Kl .,_i... + O ,(’,J..'b_ e = O d’q' (2>
X T = 0l O i
° - iy
Taking (2) - (1) we have
ce Ra v 2, :
G‘( 9 % o Py ,zi LYY A a2 NS ;‘ 6-’»""“;
et Sy e Tt T = P e - - = L~} ¥ Rad - it
A Qt“‘-\) :‘/’J ‘\'g‘*’i(\ £ ) ¥ ,) ki ~‘..,?‘)
o - ,ca ‘l

Note that the two R-dependent integrals converge. We can therefore go
to the limit Yy Under these conditions
L 4

0 o\ 5
. (:1 .._."):1;) ““"b - § ¥

which is the momentum thickness for the initial boundary layer. The
result sought is therefore written:

’( R ‘ {Aeﬂ
- v 9 =N 1.y a
[ gl -wnt e vaa (3)
- -~ o

-0 -

In this expression, the right-hand side is knownj the only unknown is
therefore 7. which, in this way, is determined, as are the results ?(nl)
1

and G(n]), and consequently the merger criterion for the line (1).



}‘_l
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Now let us consider the ideal case of a flow without initial boun-
dary layer (8%% = 0) with no suction or ejection: 1 = g = 0, and with a
uniform distribution of the total enthalpy (Tm = Ti ). We term this
! 1

case the reference case. We huve ithen:

Expression (3) shows then that 7, = ﬂ] and depends only on Ml' The same

o

holds for the merger criterion in the reference case.

In the general case, W& Cuo nS3Um njection does not

1), provided, however,
£ is fairly large, functions 6 and ¢ depend very little on the presence

cf the initial boundary layer.

With these reservations’ in mind, we can consider that the integral
of the right-hand side is a function of only M. and T /T. . We can state
. . . 1 m 17
nat the following results:

ct

a) With everything else being equal, the effect of an initial boun-
dary layer having a momentum thickness §%% on the merger criterion is the
same as tne effect of the injection into the still water at very low

velocity of a quantity P ulél.

b) The effect of an injection of unit mass g into the still water
decreases nl; in other words, it decreases the angle of merger (since V is

an increasing function of 7).

c) The effect of the injection of a momentum into the still water
increases nl, in other words it increases the angle of merger.

Since a standard injection entalls practically a simultaneous injec-
tion of momentum:
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We see that since V, increases from zero, the effect of an injection per
J

unit mass will first be overwhelming, and ¥ will decrease; then ¥ will
go through a minimum and increase.

&) The merger criterion, such as the one described in Secticn 1, /19
can e consldered general, with the reservations indicated above, but
we must take:

Cq :.—....‘1....\.;,..’313 - ’;’

‘.\),; EaAY h

L. Behavior of the Boundary Layer During the Expansion at B

The preceding calculations huave chown the influence of the initial
boundary layer upon the merger criterion. The question now is to deter-
mine in every special case the state ¢f this boundary layer at the origin
of the isobaric mixture, i.e., after the expansion at B.

More precisely, given a boundary layer with a velocity profile \\;
¢=¢, (%) before the expansion, the question is to calculate the profile ™
: ;

@ (£-) of the boundary layer after the expansion.

In order to perform these calculations, with the details mentioned
in Ref. 2, we shall make the following assumptions: ’

A) At a very small distance from B and downstream - of the order
of § - we can find a cross section Oy' where all the velccities have
taken & direction parallel to Ox, and where the pressure has becoue .
uniform and equal to Dy -

B) If Q and Q' are two points situated on the same streamline be-
fore and after the expansion, the total enthalpy and the entropy are con-
served from Q to Q. We shall say that Q and Q' are homologous.
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Tnis assumption leads to the consideration that the transition of a
Tluid parvicle from Q to Q' is so rapid that the viscosity effects are

T
¢. Under these conditions the calculations become easy.

First the distribution of Mach numver M(Q) as a function of y/§ is
. e . . . !
determined from the initial data. Since the expansion ratic 5— is given,
0

M'(Q') is deduced for the downstream location. Then, with the help of
the continuity egquation, the correspondence (Q, Q') remains to be deter-
mined; in other words, to every tube elexent of stream of thickness dy
around Q, corresponds, through the isentropic expansion, an element dy'
around Q such that

pundye urdy’

But since the expansion is an isentropic one we have

0 ) :

This relation yields the sought correspondence (Q, Q').

u
We have in this way the distribution M(y'), from which 3 (y"),
1
é; (y’), and consequently the boundary layer profile after the expansion
1
are determined. The numerical calculations that we have performed in
Ref. 3, for initial boundary layers having profiles of 1/5 of 1/7 powers,
have shown us that we can express the momentum thickness 6*% after ex-
pansion, as a function of 53* before expansion, regardless of M., by the
relation



Necessary Experimental Verifications

The preceding theory is based on & simplification of the general
eguations, where the turbulent mixture coefficients st and xt are unknown.

With this scheme the proolem 1c reduccd to obtaining knowledge of the
¢ -5 - 4 4

=t the tenmperature distribution
in the mixture zone satisfies the =ssomption P = 1.

The values of ¢ are well knowi Trom the incompressivle regime up
Tc Mach 2.5, approximately. Beyond this, the erperimental results show
more and more deviations as the Mach number increases. There are, how-
er, very little data on the temperature distribution of a mixture

Research is being conducted ot the O.N.LE.R.A. on these topics,
tnder the direction of M. Sirieix. This »esearch makes special use of
interferometry, whose analysis was made accurate and automatic by the
work of J. L. Soligrac (Ref. 6).

Conclusion

The method which has teen propounded in a few of its basic elements
allows us from now on to predict the flow behavior at the base of a
supersonic body, - such as the supersonic transport plane Concorde, whose
design studies have just been initiated.

More research is still necessary to extend its applications to the
hypersonic Tield.

18 February 1963
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